Hammerhead Flood Control System Evaluation

Arnon Rosan Garrison Flood Control

Project ID:	Garrison-0723
Document Name:	Garrison-0723 Hammerhead Flood Control System Evaluation
Date Issued:	September 5, 2023

Predictive Engineering, Inc. 555 MLK Jr Blvd, Suite 105 Portland, Oregon 97214-2120 +1 503.206.5571 www.predictiveengineering.com

THE ACCURACY AND VALIDITY OF THE FINDINGS ARE A DIRECT RESULT OF THE ACCURACY, CORRECTNESS, AND VALIDITY OF THE DATA PROVIDED BY THE CLIENT. PREDICTIVE ENGINEERING, INC. ASSUMES NO RESPONSIBILITY AND ACCEPTS NO LIABILITY FOR THE CONSEQUENCES OF INCORRECT OR INACCURATE DATA THAT HAD BEEN PROVIDED BY THE CLIENT AND SUBSEQUENTLY USED IN THIS WORK.

RECOMMENDATIONS CONTAINED IN THIS REPORT RELATES ONLY TO THE OPERATING CONDITIONS EXPLICITLY STATED. PREDICTIVE ENGINEERING ASSUMES NO RESPONSIBILITY FOR PROBLEMS THAT MAY ARISE WHEN OPERATING UNDER DIFFERENT CONDITIONS.

Rev	Description of Change	Date Issued	Ву	Reviewed
1	Engineering Report Released	September 5, 2023	MK	NTA

Mousan Koomi

Maysam Kiani, PhD, PE, PMP, PMI-RMP Principal Mechanical Engineer and Managing Partner Predictive Engineering, Inc.

STATE OF O	
BOARD OF EXAMINERS FOR LAND SURVEYI	
Maysam Ki	iani
This certifies that the person named above is registered as an authorized: Professional Engineer	License Number 102335PE
Especially qualified discipline:	Expiration Date 06/30/2025

Table of Contents

1.	OBJECTIVE	5			
2.	EXECUTIVE	SUMMARY6			
3.		LING7			
	3.1 ENGINE	ering Units and Software7			
	3.2 Significance Units				
	3.3 CAD GEOMETRY				
	3.4 MATERIALS				
	3.5 FEA IDE	ALIZATION8			
4.		ATION RESULTS11			
	4.1 CASE 1:	STRESS RESULTS			
	4.1.1	INSIDE MOUNT			
	4.1.2	OUTSIDE MOUNT11			
	4.2 CASE 2: STRESS RESULTS				
	4.2.1	INSIDE MOUNT			
	4.2.2	OUTSIDE MOUNT			
	4.1 APPEND				
	4.2 LOAD APPLICATION VERIFICATION				

List of Figures

Figure 1: Garrison's Hammerhead Flood Control System designs	5
Figure 2: Example of stress results covered in this report	6
Figure 3: CAD geometry provided by Garrison	7
Figure 4: Assembly of Case 1 system for inside mounting of 1020 mm wide door	8
Figure 5: Structural Components for FEA	9
Figure 6: FEA Mesh and Connections	9
Figure 7: Constraints and Loads	10
Figure 8: Case 1: Inside Mount FEA Results	11
Figure 9: Case 1: Outside Mount FEA Results	11
Figure 10: Case 2: Inside Mount FEA Results	12
Figure 11: Case 2: Outside Mount FEA Results	12

1. **OBJECTIVE**

DDISC

FLOOD CONTROL

Garrison Flood Control requested an analysis of their Hammerhead Flood Control System. Recognized for its high modularity, this system accommodates various openings. It is designed for safe installation in spaces up to 3050 mm (10 ft) wide and suits both interior and exterior mounting configurations. Utilizing Simcenter Femap and Nastran, the system was assessed for hydrostatic loading across different heights and widths. The evaluations covered the following scenarios:

- Case 1: 1020 mm (40 in) wide opening with 5 planks
- Case 2: 3050 mm (10 ft) wide opening with 5 planks

Figure 1 presents the two mounting design layouts of the Hammerhead Flood Control System.

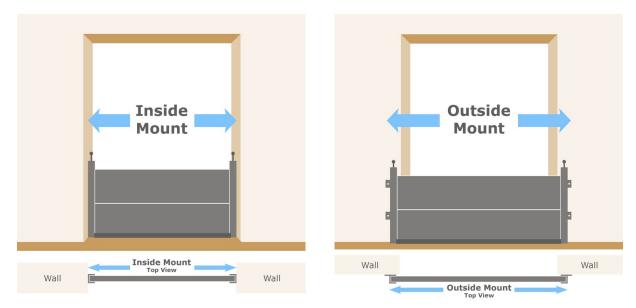
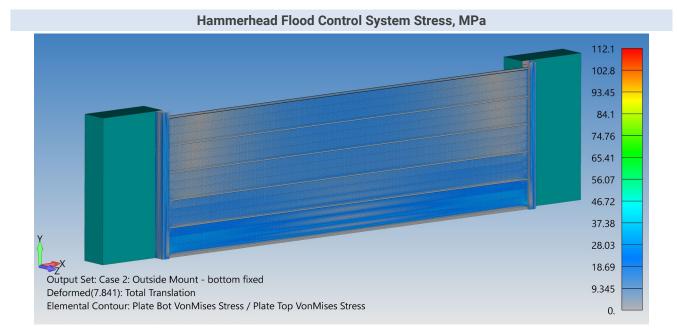


Figure 1: Garrison's Hammerhead Flood Control System designs



2. EXECUTIVE SUMMARY

FLOOD CONTROL

The results of the analysis showed that in Case 1, which pertains to a 1020 mm (40 in) wide opening with 5 planks, both the inside and outside mount scenarios successfully passed the FEA evaluation. This success was evident as the maximum stress observed was lower than the material's yield stress. For Case 2, involving a 3050 mm (10 ft) wide opening and 5 planks, the findings were positive for both inside and outside mount cases. In this scenario, the maximum stress was again found to be below the material's yield stress, indicating a successful FEA evaluation.

Figure 2 provides a visual representation of these results. Table 1 presents a summary of the stress results of the cases studied in this investigation.

Table 1:	Summary of Stress Results
----------	---------------------------

Case	Mounting	Plank Width, mm	Height, mm	Number of Planks	Max. Stress, MPa	Result
1	Inside Mount	988	1,000	5	16	Pass
I	Outside Mount	1,110	1,000	5	23	Pass
2	Inside Mount	3,020	1,000	5	87	Pass
Z	Outside Mount	3,140	1,000	5	112	Pass

3. FEA MODELING

3.1 ENGINEERING UNITS AND SOFTWARE

This analysis is based on the SI system with length as mm's, force as N's, mass as Tonne (kg), time as seconds and temperature as C. In this unit system, the nominal mass density of aluminum is 2.710E-9 Tonne/mm3 with deflections in mm's and stress in MPa. The FE model was built with Femap v2301 MP1 and analyzed with Simcenter Nastran.

3.2 SIGNIFICANCE UNITS

Analysis results are reported to three significant digits and analysis inputs are likewise rounded to three significant digits. Fundamental physical constants are set to four significant digits (e.g., gravity is 9,807 mm/s²). The imposed limitation on the number of significant digits implies, at best, a relative numerical precision of 1%.

3.3 CAD GEOMETRY

Figure 3 shows the CAD geometry of the plank received from Garrison including a reference measurement.

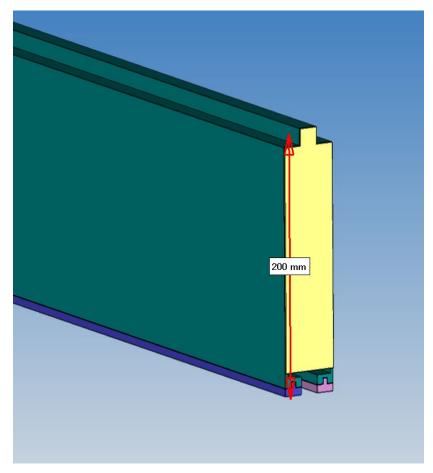


Figure 3: CAD geometry provided by Garrison

3.4 **MATERIALS**

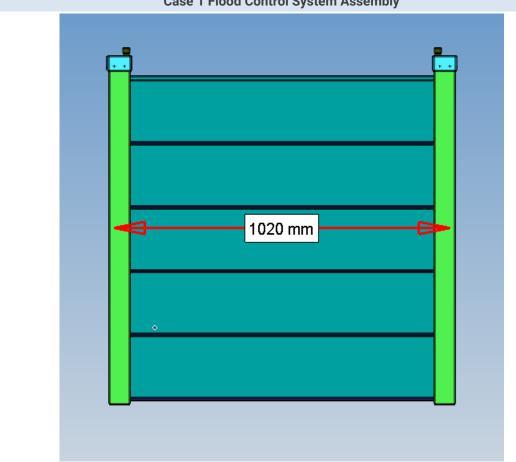

Table 2 contains a list of the materials used within the model.

 Table 2: Analysis Materials

Usage	Material	E _{, MPa}	Poisson's Ratio	Yield Strength, _{MPa}	Ultimate Strength, MPa
Planks	6063-T5 Aluminum	70,000	0.33	145	186
Posts	6063-T5 Aluminum	70,000	0.33	145	186
Rubber Seals	Rubber EPDM	16.50	0.49	-	-

FEA IDEALIZATION 3.5

Figure 4 shows the assembly of the 1020 mm wide inside mount system for Case1.

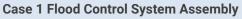


Figure 4: Assembly of Case 1 system for inside mounting of 1020 mm wide door

Figure 5 depicts the FEA idealization of the assembly's CAD geometry. Chamfers are defeatured for simplicity, and both planks and posts are represented as plate structures for streamlined analysis.

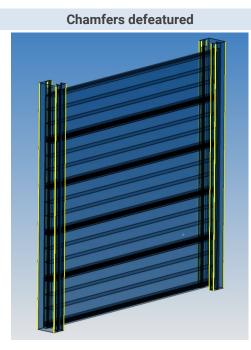


Figure 6 showcases the FEA idealization of the assembly's CAD geometry, complete with the FEA mesh. The illustration also highlights the planks' tight connection facilitated by a slide-in plate and rubber seal.

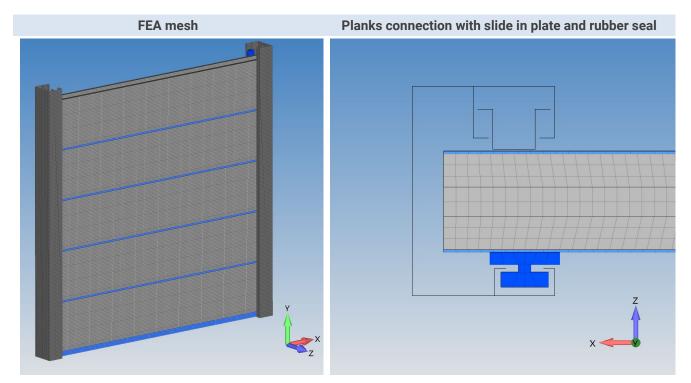


Figure 6: FEA Mesh and Connections

Figure 7 illustrates the boundary conditions for the Inside Mount, as well as the application of hydrostatic load on the system. The planks are tightly pressed together, ensuring a water-tight seal. Consequently, the system's base is assumed to be firmly anchored to the ground.

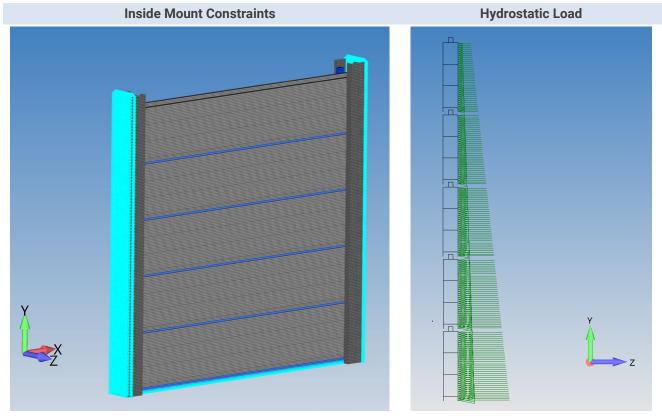


Figure 7: Constraints and Loads

4. FEA SIMULATION RESULTS

4.1 CASE 1: STRESS RESULTS

4.1.1 INSIDE MOUNT

Figure 8 shows the von Mises stress of Hammerhead Flood Control Barrier. The maximum von Mises stress is 16 MPa which is lower than the material's yield stress.

Figure 8: Case 1: Inside Mount FEA Results

4.1.2 OUTSIDE MOUNT

Figure 9 shows the von Mises stress of Hammerhead Flood Control Barrier. The maximum von Mises stress is 23 MPa which is lower than the material's yield stress.

Figure 9: Case 1: Outside Mount FEA Results

4.2 CASE 2: STRESS RESULTS

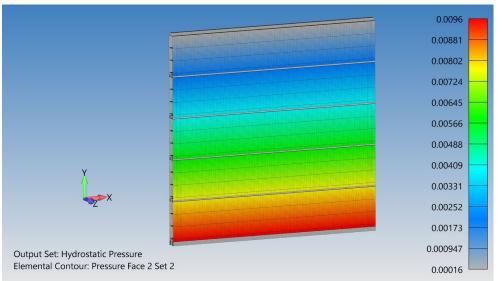
4.2.1 INSIDE MOUNT

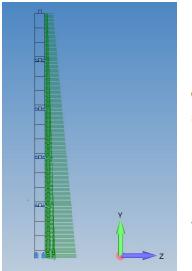
Figure 10 shows the von Mises stress of Hammerhead Flood Control Barrier. The maximum von Mises stress is 86.9 MPa which is lower than the material's yield stress.

Figure 10: Case 2: Inside Mount FEA Results

4.2.2 OUTSIDE MOUNT

Figure 11 shows von Mises stress of Hammerhead Flood Control Barrier. The maximum von Mises stress is 112 MPa which is lower than the material's yield stress.




4.1 **APPENDIX**

4.2 LOAD APPLICATION VERIFICATION

To verify the hydrostatic pressure exerted on the planks in the FE model, we hand-calculated the pressure at the barrier's bottom and the total force on the planks for Case 1: Inside Mount. This data was then compared to the information derived from the model for consistency and accuracy.

$$F = \frac{\rho g h}{2} \times h \times w = \frac{10^{-9} \times 9806 \times 961.85}{2} \times 961.85 \times 1016 = 4,610 N$$

Check Sum of Forces

Summation of Forces, Moments	, Pressures and	d Body Loads fo	or Set 2 (CSys 0)	
Nodal Force	FX =	0. FY =	0. FZ =	0.
Nodal Moment	MX =	0. MY =	0. MZ =	0.
Pressure Force	FX =	0. FY =	0. FZ =	-4637.151
Body Translational Accel	FX =	0. FY =	0. FZ =	0.
Body Varying Trans Accel	FX =	0. FY =	0. FZ =	0.
Body Rotational Accel	FX =	0. FY =	0. FZ =	0.
Body Rotational Velocity	FX =	0. FY =	0. FZ =	0.
Totals (CSys 0)				
About Location	X =	0. Y =	0. Z =	0.
Forces	FX =	0. FY =	0. FZ =	-4637.151
Moments	MX = -43919	95.2 MY = -	-1729796. MZ =	0.

